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Abstract

In this report we list the Fortran subroutines for

evaluating the confluent hypergeometric functions NI(a,b:x) and

U(a,b;x). These subroutines use the stable recurrence

relations given e.g. in Wimp.
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Introduction

It is well known that the ordinary differential equation

d2 + (-x) d - ay = 0x x

has a solution

y(x) = A.Nt(a,1;x) + BU(a,1;x)

if a is not a negative integer.

This problem arises e.g. when solving the linearized

shallow water equations with the full linear variation in depth

included (see Williams, Staniforth and Neta, [1]).

The computation of the confluent hypergeometric functions

is based on the Miller algorithm (see e.g. Wimp. [2]). In

general. one has a second order difference equation

z(n) + a(n)z(n+l) + b(n)z(n+2) = 0. n > 0, b(n) # 0

If b(n) = 0 for some n, in some cases one can make a change of'

variable Y(n) = A(n)z(n) which will produce an equation of' the

desired type. Let w(n) be a nontrivial solution and the sum of

the normalizing series

S = c e(k)w(k) : 0
k=O



is known. Let N be a large integer and define ZN(n), 0 <- n 5

N+1 . by

ZN(fl) = {O = N+1

ZN(fl) + a(n)zN(nIl) + b(n)zN(II+2 ) =0, n =N-1i........ 1. 0

One can approximate w(n) by w(n)

%"=n SZN(n)/SN

where

SN Z (~k)zN (<).
k=O

The algorithm is said to con-verge if

%AN n)- w (n) as N - o

The f urct i on M (a.. b, x) sat i sf i es the recu rrence relI at ioil

(2n~b±2) (n~a)z(ti) - (2n+b)+-i {(2a-b) + (2n+b) (2n +b±2)}(I

- (2n+h) (n-ib+ -a) z(n±2) =0
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where

(c)I r(n+c)
F(c)

The normalization relationship used in our subroutine is

S b- = =O k! (b-l)k(b+2k-1)w(k)
k=O

An obvious modification must be made if b = 1. The algorithm

is not defined if b, b+i-a. a are negative integers or zero.

The function U(a,b:x) satisfies the relationship

(n+a)(n+a+l-b)z(n) - (n+1)[2(n+a+1)+x-b]z(n+t)

+ (n+l)(n+2)z(n+2) = 0

The minimal solution is

w (n) n(a)n(a+l-b)n U(a+n b:x)

for jarg xl < ,r. A normalization relation is

OC
1 = \( , .

k=O

In the next section we give a listing of the Fortran

subrout i nets .



Subroutine Miller

SUBROUTINE MILLER(N.ALPHABETA.X,S.SSCOEFF)
INTEGER N
REAL,8 ALPHA .BETA , X ,SS
REAL,8 S(0:1000)
EXTERNAL COEFF

C USES THE J.C.P. MILLER ALGORITHM TO COMPUTE
C S(O:N).
C BEGIN

INTEGER NN.K
REAL,8 TD.EPS,A,B.C
REAL,*8 OLDS(0:1000)
EPS = 0.000000001

C INITIALIZE OLDS.
DO 1 K = 0, 1000

OLDS(K) = 0
1 CONTINUE

C CHOOSE INITIAL NN.
NN = N + 2

C INITIALIZE K, S AND T.
2 K = NN

S(IK+l) 0
s (K) =1
CALL COEFF(K.ALPHA.BETAXAB,C)
T = 2-C-S(iK)

C TAKE A BACKWARD RECURRENCE STEP AND UPDATE IT.
3 K = K - 1

CALL, COEFF(K.ALPHABETA.,X.AB,C)
S(K) = A-S(K+I) + B-S(K+2)

C CHECK FOR OVERFLOW AND RESCALE IF NECESSARY.
D= DABS(S(K))
IF (D .GT. 1.D30) THEN

C" BEG IN
CALL SCAIE(KNN.ST.D)

END IF
IF (K .GT. 0) THEN

C BEG IN
T T + 2,C-S(K)
GO TO 3

END I F
T = T + C(.S(O)
DO 4 K 0. N

8(iK) =S(K,)/T

CONT I NUE
C TEMPORARY PRINT STATEMENT.
C PRINT-. S(O)
C TEST FOR CONVERGENCE.

I) = 0
I)0 5 K = 0. N

5 1) = 1) + S(K)--2

CONT I NUE
D = DSQRT(I)
T = 0

• • , i Il l I I I I5



DO 6 K = 0, N
T = T + (S(K) - OLDS(K))-w2

6 CONT I NUE
T = DSQRT(T)

C TAKE ANOTHER STEP IF NO CONVERGENCE.
IF (T .GT. EPS-D) THEN

C BEGIN

NN = 2,NN
DO 7 K = 0, N

OLDS(K) = S(K)
7 CONTINUE

IF(NN .LE. 1000) GO TO 2
PRINT 999,NNALPHABETAXT

999 FORMAT(' -- NO CONVERGENCE -- NN AP CP X T '.15.4E14.7)
END IF
SS=S(O)
RETURN

END

6



SUBROUTINE COEFF(NALPHABETA.X,A,B .C)
INTEGER N
REAL-8 ALPIIA.BETA.X.A,B,C

C COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITHM FO
C A CONFLUENT HYPERGEOMETRIC FUNCTION M(a,b:x)
C SEE JET WIMP. COMPUTATION WITH RECURRENCE RELATIONS.
C PITMAN 19S-1 PP. 61-62
C BEGIN

INTEGER M,K
REAL, ..T.UV. W
S = 2-ALPHA - BETA
T = N + ALPHA

M = 2-N
U NM + BETA
V = U + 1

W = V + 1
A = (S/W + '/X) -V/T
B = (N + BETA - ALPHA + 1)U/T/W
T= 1
IF (N .GT. 0) THEN

C BEGIN
S BETA - 1
DO 1 K = 1. N-1

T = -T-(1+I±S/K)
CONT I NI E
T = -,'(1+S/M)

END I I
C = T
RETURN

END

SUBROUTINI- SCALE(K.NS.T,D)
INTEGEB N.E
REAL-. T. I)
REAL-S S(0: 1000)

C 13EG IN
I NT GFHi .1

DO I .J 1\. N
S(.J ) : -(.J)/I)

('1 I NI i.I

R ETIF R
END



SUBROUTINE COEFU(NALPHA.BETA.XA.B,C)
INTEGER N
REAL,-8 ALPHA. BETA.X,A.BC

C COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITHM FOR
C A CONFLUENT IIYPERGEOMETRIC FUNCTION Ll(a.b:x)
C SEE JET WIMP, COMPUTATION WITH RECURRENCE RELATIONS.
C PITMAN 1984 PP. 63-64
C BEGIN

INTEGER MK
REAL8 S.T.L,,V.W
S = ALPHA + QFLOAT(N)
T = S + !.DO
U = S-(T - BETA)
V = QFLOAT(N + 1)
W = V + 1.DO
A = (2-'T + x - BETA)V/U
B = - lV',/U

C= 1
RETUR N

END

Remark: The program that calls I1iller must supply as a lasi.
parameter either COEFF (for MI) or COEFL" (for U)

I 8



The subroutines are available on a diskette from either author

upon request . These subroutines were tested extensively for

various values of' a. b and x.

Remark: If the parameter is a negative integer, the solution

of the differential equation is

y = ,AL,(x) + B{ln IxiLn(x) + Z 3,mm}
m=O

ws'here n - -a.

I.n(X) are Laguerre polynomials whose coefficients i I
i-

i = 2 i-1 i n

(I = - I .

The coeffi ei,-Il. .1m Sixt i sfv

I '-2 ( m - n ) )
(ii- i) i.. + (1 - (m n a m,

2 mfll+i =m - 2 m = 1 ...... If-i

- - I Ill !I
n) n~(f

In i - I

- IIn- 11 I "11- il = ln-'f . Ii -.. . .

'fi
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